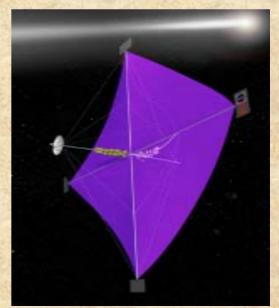


Thin Film and Inflatable Structures Technology for In-Space Fabrication

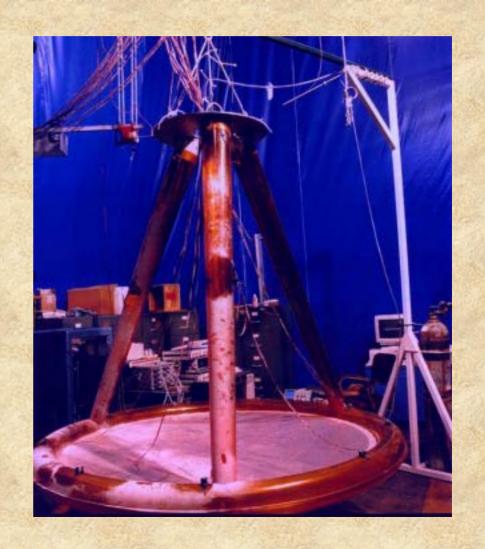
Presentation to In-Space Fabrication and Repair Research Workshop, July 9, 2003

Mike Tinker
MSFC Engineering Directorate
Structures, Mechanics, & Thermal Dept.


Thin Film Structures

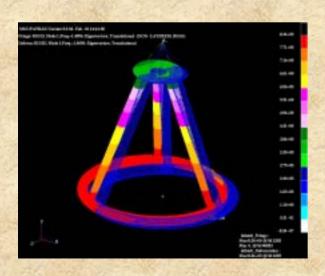
- Antennas/Optics
- Space Power Systems
- Solar Sails
- Solar Thermal Propulsion

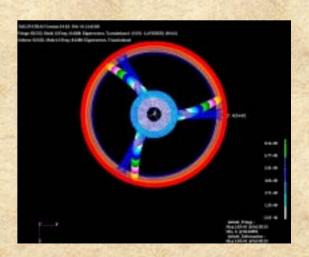
MSFC activities in the past 5 years in thin film and inflatable structures technology:


- 1. Dynamic test/modeling of thin film structures:
 - (a) Inflatable 2-m concentrators for Shooting Star Experiment; also limited deployment experiments
 - (b) Inflatable 2x3-m, 5-m and 4x6-m lenticular elements--use of laser vibrometer system
 - (c) Cylindrical strut and circular membrane
- 2. Deployment of thin film strut
- 3. Foam rigidization of cylindrical booms

Description of Inflatable 2-Meter Concentrator

- Torus/strut assembly with lens simulator
- Tapered 6-ft struts of 2-mil polyimide film; diameter varying from 6.8" to 4"
- Struts attach to plate
- Torus with 6" crosssectional dia. and 6-ft outer dia.




Assembly Model Results

- Model of the concentrator assembly was developed
- This was an important accomplishment in the building-block approach

5-Meter Collector

Materials and Dimensions:

- Kapton polyimide torus and CP-1 lenticular, both 1-mil thick (7.5 lb)
- Solid composite struts (approx. 12.5 lb)
- Torus dimensions: 21-ft outer diameter and 2-ft cross-sectional diameter
- Lenticular size: 16-ft dia.

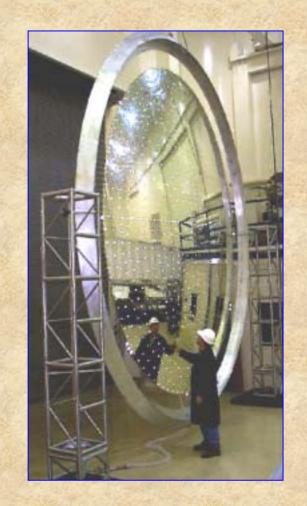
Dynamic Testing Approach

 Inflated torus and lenticular assembly mounted on a composite

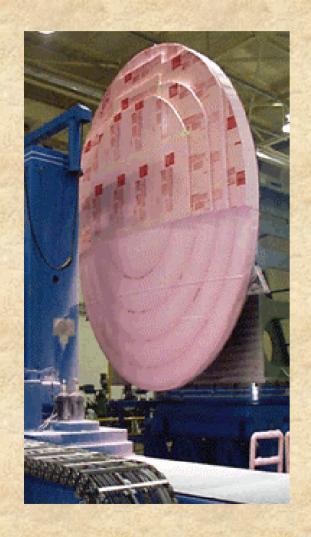
stand

Shaker excitation applies
 on a strut

- Accelerometers on strut and stand
- Laser vibrometer used for responses on inflatable surfaces



4x6-Meter Inflatable Concentrator



- Potential applications for propulsion, power, and communications
- Inflatable lenticular attached to aluminum fixture by catenaries
- Fixture to be supported horizontal to the floor by Ibeam stands for testing

Mandrel Fabrication for Thin Film Concentrators

 MSFC manufacturing support for 4x6 meter inflatable concentrators



Manufacturing of Mandrel for **Inflatable Concentrator**

 Machining of 1x2 meter mandrel at MSFC

Deployment of Thin-Film Inflatable Strut

- Polyimide thin film strut and storage canister fabricated at MSFC by summer student
- Packaging and deployment experiments were conducted

Inflatable Structure Rigidization Technology

- Thin film inflatable concentrator
- Full-size structure tested in MSFC large vacuum chamber
- Quarter-scale model foam-rigidized by UAT

Foam-Rigidized Annular Strut Construction

- Annular tube constructed with polyimide film sleeves and polyurethane foam filler
- Boom segment with OD
 3.5", ID 2.5" was
 successfully fabricated

Modal Testing of Foam-Rigidized Struts

- Dynamic testing of struts manufactured by MSFC and United Applied Technologies
- Free suspension
- Lightweight hammer excitation
- Accelerometer response

In-Space Fabrication Research Recommendations

• In-space fabrication of booms--Investigate various materials,
methods of deployment, and
rigidization--including thin films
with foam injection

Assembly of fabricated booms—
 Develop innovative joints and assembly techniques to construct
 (1) solar sails, (2) solar concentrators, and (3) solar arrays

